Search results

1 – 2 of 2
Article
Publication date: 10 July 2020

Min Liu, Muzhou Hou, Juan Wang and Yangjin Cheng

This paper aims to develop a novel algorithm and apply it to solve two-dimensional linear partial differential equations (PDEs). The proposed method is based on Chebyshev neural…

Abstract

Purpose

This paper aims to develop a novel algorithm and apply it to solve two-dimensional linear partial differential equations (PDEs). The proposed method is based on Chebyshev neural network and extreme learning machine (ELM) called Chebyshev extreme learning machine (Ch-ELM) method.

Design/methodology/approach

The network used in the proposed method is a single hidden layer feedforward neural network. The Kronecker product of two Chebyshev polynomials is used as basis function. The weights from the input layer to the hidden layer are fixed value 1. The weights from the hidden layer to the output layer can be obtained by using ELM algorithm to solve the linear equations established by PDEs and its definite conditions.

Findings

To verify the effectiveness of the proposed method, two-dimensional linear PDEs are selected and its numerical solutions are obtained by using the proposed method. The effectiveness of the proposed method is illustrated by comparing with the analytical solutions, and its superiority is illustrated by comparing with other existing algorithms.

Originality/value

Ch-ELM algorithm for solving two-dimensional linear PDEs is proposed. The algorithm has fast execution speed and high numerical accuracy.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 May 2022

Yanfei Lu, Futian Weng and Hongli Sun

This paper aims to introduce a novel algorithm to solve initial/boundary value problems of high-order ordinary differential equations (ODEs) and high-order system of ordinary…

Abstract

Purpose

This paper aims to introduce a novel algorithm to solve initial/boundary value problems of high-order ordinary differential equations (ODEs) and high-order system of ordinary differential equations (SODEs).

Design/methodology/approach

The proposed method is based on Hermite polynomials and extreme learning machine (ELM) algorithm. The Hermite polynomials are chosen as basis function of hidden neurons. The approximate solution and its derivatives are expressed by utilizing Hermite network. The model function is designed to automatically meet the initial or boundary conditions. The network parameters are obtained by solving a system of linear equations using the ELM algorithm.

Findings

To demonstrate the effectiveness of the proposed method, a variety of differential equations are selected and their numerical solutions are obtained by utilizing the Hermite extreme learning machine (H-ELM) algorithm. Experiments on the common and random data sets indicate that the H-ELM model achieves much higher accuracy, lower complexity but stronger generalization ability than existed methods. The proposed H-ELM algorithm could be a good tool to solve higher order linear ODEs and higher order linear SODEs.

Originality/value

The H-ELM algorithm is developed for solving higher order linear ODEs and higher order linear SODEs; this method has higher numerical accuracy and stronger superiority compared with other existing methods.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2